Pengenalan Simbol Jarimatika Menggunakan Orientasi Histogram dan Multi-layer Perceptron
Abstract
Makalah ini membahas tentang pengenalan simbol-simbol Jarimatika menggunakan Jaringan Syaraf Tiruan (JST). Hasil penelitian ini dapat digunakan untuk pengembangan aplikasi perhitungan Jarimatika dan interaksi antara manusia dan komputer yang lebih natural. Segmentasi yang digunakan adalah orientasi histogram, algoritma JST yang digunakan adalah back propagation multi-layer perceptron. Layer-layer JST tersebut adalah satu layer input, satu hidden layer dan satu output layer. Penelitian ini betujuan untuk implementasi pengenalan pola simbol Jarimatika menggunakan JST multi-layer perceptron, implementasi harus mampu menghasilkan klasifikasi dengan benar, sistem harus mampu melakukan klasifikasi dari gambar statis, sehingga dapat menganalisa pengenalan gestur tangan dari simbol-simbol Jarimatika.Penelitian ini menggunakan 18 simbol dasar Jarimatika. Total citra yang digunakan adalah 360 yang terbagi atas 270 citra untuk training dan 90 citra untuk testing. Hasil penelitian ini menunjukkan bahwa JST multi-perceptron dapat digunakan untuk pengenalan simbol Jarimatika dengan akurasi 93.33%. Jumlah neuron yang optimal pada hidden layer adalah 725. Implementasi penelitian ini menggunakan Matlab versi 7 (R2010a).
This paper focuses on the recognition of Jarimatika symbols using Artificial Neural Network (ANN). The results of this research can be used to develop applications for the Jarimatika and to make interaction between humans and computers more natural. The Segmentation used is orientation histograms, the ANN algorithm used is back propagation multi-layer perceptron. Th layers of the ANN are one input layer with 19 data, one hidden layer and one output layer. This research aims to implement Jarimatika symbols with pattern recognition and multi-layer perceptron algoritm, the implementation must be able to produce the correct classification, the system must be able to perform the classification of static images, so can analyze the recognition of hand gestures from Jarimatika symbols. This research uses 18 basic Jarimatika symbols. Total image used were 360, consisting of 270 images for training and 90 images for testing. The results of this study indicate that the multi-layer perceptron ANN can be used for recognition of Jarimatika symbols with accuracy 93.33%. The optimal number of neurons in the hidden layer is 725. Implementation of this research using Matlab version 7 (R2010a).
Full Text:
PDFReferences
Mitra, S., Acharya, T., 2007, Gesture Recognition: A Survey, IEEE Transaction on System, Man, and Cybernetics Part C: Applications and Reviews, Vol 37, No 3, hal 311-324.
Murthy, G. R. S., Jadon, R.S., 2009, A Review of Vision Based Hand Gestures Recognition, International Journal of Information Technology and Knowledge Management, Vol 2, No 2, hal 405-410.
Rabiner, L., 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE.
Yamato, J., Ohya, J., Ishii, K., 1992, Recognizing Human Action in Time-Sequential Images Using Hidden Markov Model, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR ’92, Champaign, 15-18 Juni 1992.
Samaria, F., Young, S., 1994, HMM-Based Architecture for Face Identification. Image and Computer Vision, Vol 12, No 8, hal 537–543.
Starner, T., Pentland, A., 1997, Real-Time American Sign Language Recognition from Video Using Hidden Markov Models, Motion-Based Recognition, Vol 9, hal 227-243.
Rigoll, G., Kosmala, A., Schuster, M., 1997, High Performance Gesture Recognition Using Probabilistic Neural Networks and Hidden Markov Models, Time-Varying Image Processing and Moving Object Recognition 4, hal 233-287.
Marcel, S., Bernier, O., Viallet, J. E., Collobert, D., 2000, Hand Gesture Recognition Using Input-Output Hidden Markov Models, Fourth IEEE International Conference on Automatic Face and Gesture Recognition, Grenoble, 28-30 Maret 2000.
Fahn, C. S., Chu, K. Y., 2011, Hidden-Markov-Model-Based Hand Gesture Recognition Techniques Used for a Human-Robot Interaction System, Human-Computer Interaction: Interaction Techniques and Environments, Springer-Verlag, Berlin Heidelberg.
Binh, N. D., Ejima, T., 2006, Real-Time Hand Gesture Recognition Using Pseudo 3-D Hidden Markov Model, Fifth IEEE International Conference on Cognitive Informatics (ICCI 2006), Beijing, 17-19 Juli 2006.
Chang, C. C., Pengwu, C.M., 2004, Gesture recognition approach for sign language using curvature scale space and hidden Markov model, IEEE International Conference on Multimedia and Expo (ICME ’04), Taipei, 30 Juli 2004.
Dennemont, Y., Bouyer, G., Otmane, S., Mallem, M., 2012, A Discrete Hidden Markov Models Recognition Module for Temporal Series: Application to Real-Time 3D Hand Gestures, 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), Istanbul, 15-18 Oktober 2012.
Elmezain, M., Al-Hamadi, A., Krell, G., El-Etriby, S., Michaelis, B., 2007, Gesture Recognition for Alphabets from Hand Motion Trajectory Using Hidden Markov Models, IEEE International Symposium on Signal Processing and Information Technology, Giza, 15-18 Desember 2007.
Elmezain, M., Al-Hamadi, A., Appenrodt, J., Michaelis, B., 2008, A Hidden Markov Model-based Continuous Gesture Recognition System for Hand Motion Trajectory, 19th International Conference on Pattern Recognition (ICPR 2008), Tampa, 8-11 Desember 2008.
Falinie, Y., Gaus, A., Wong, F., 2012, Hidden Markov Model-Based Gesture Recognition with Overlapping Hand-Head/Hand-Hand Estimated Using Kalman Filter, Third International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kota Kinabalu, 8-10 Februari 2012.
Irteza, K. M., Ahsan, S. M. M., Deb, R. C., 2012, Recognition of Hand Gesture Using Hidden Markov Model, 15th International Conference on Computer and Information Technology (ICCIT), Chittagong, 22-24 Desember 2012.
Morguet, P., Lang, M., 1998, Spotting Dynamic Hand Gestures in Video Image Sequences Using Hidden Markov Models, International Conference on Image Processing (ICIP ‘98), Chicago, 4-7 Oktober 1998.
Rao, J., Gao, T., Gong, Z., Jiang, Z., 2009, Low Cost Hand Gesture Learning and Recognition System Based on Hidden Markov Model, Second International Symposium on Information Science and Engineering (ISISE), Shanghai, 26-28 Desember 2009.
Shrivastava, R., 2013, A Hidden Markov Model Based Dynamic Hand Gesture Recognition System Using OpenCV, IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad, 22-23 Februari 2013.
Ulas, A., Yıldız, O. T., 2009, An Incremental Model Selection Algorithm Based on Cross-Validation for Finding the Architecture of a Hidden Markov Model on Hand Gesture Data Sets, Eight International Conference on Machine Learning and Applications(ICMLA’09), Miami Beach, 13-15 Desember 2009.
Hieu, D. V., Nitsuwat, S., 2008, Image Preprocessing and Trajectory Feature Extraction based on Hidden Markov Models for Sign Language Recognition, Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD ’08), Phuket, 6-8 Agustus 2008.
Wan, J., Ruan, Q., An, G., Li, W., 2012, Gesture recognition based on Hidden Markov Model from sparse representative observations, IEEE 11th International Conference on Signal Processing (ICSP), Vol 2, Beijing, 22-25 Oktober 2012.
Yang, R., Sarkar, S., 2006, Gesture Recognition using Hidden Markov Models from Fragmented Observations, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 1, New York, 17-22 Juni 2006.
Yang, Z., Li, Y., Chen, W., Zheng, Y., 2012, Dynamic Hand Gesture Recognition Using Hidden Markov Models, 7th International Conference on Computer Science Education (ICCSE), Melbourne, 14-17 Juli 2012.
Bilal, S., Akmeliawati, R., Shafie, A. A., Salami, M. J., 2013, Hidden Markov Model for Human to Computer Interaction: A Study on Human Hand Gesture Recognition, Artificial Intelligence Review, Vol 40, No 4, hal 1-22.
Elmezain, M., Al-Hamadi, A., Appenrodt, J., and Michaelis, B., 2009, A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition, International Journal of Electrical, Computer, and Systems Engineering (IJECES), Vol 3, No 3, hal 156-163.
Kim, I. C., IlChien, S., 2001, Analysis of 3D Hand Trajectory Gestures Using Stroke-Based Composite Hidden Markov Models, Applied Intelligence, Vol 15, No 2, hal 131–143.
Wilson, A. D., Bobick, A. F., 1999, Parametric Hidden Markov Models for Gesture Recognition, The IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol 21, No 9, hal 131-143.
Hong, P., Turk, M., Huang, T. S., 2000, Constructing Finite State Machines for Fast Gesture Recognition, 15th International Conference on Pattern Recognition, Vol 3, Barcelona, 3-7 September 2000.
Verma, R., Dev, A., 2009, Vision Based Hand Gesture Recognition Using Finite State Machines and Fuzzy Logic, International Conference on Ultra Modern Telecommunications and Workshops, St. Petersburg, 12-14 Oktober 2009.
Li, X., 2003, Gesture Recognition Based on Fuzzy C-Means Clustering Algorithm, Department of Computer Science, The University of Tennessee, Knoxville.
Glodberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addion Wesley, Boston.
Krose, B., Smagt, P. V. D., 1993, An Introduction to Neural Networks, University of Amsterdam, Amsterdam.
Littmann, E., Drees, A., Ritter, H., 1996, Visual Gesture Recognition by a Modular Neural System, International Conference on Artificial Neural Networks (ICANN 96), Venice, 21-23 Agustus 1996.
Stergiopoulou, E., Papamarkos, N., Atsalakis, A., 2005, Hand Gesture Recognition Via a New Self-organized Neural Network, Progress in Pattern Recognition, Image Analysis and Applications, Springer Berlin Heidelberg.
Angelopoulou, A., Rodrıguez, J. G., Psarrou, A., Gupta, G., 2010, Hand Gesture Modelling And Tracking Using A Self-Organising Network, The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, 18-23 Juli 2010.
Araga, Y., Shirabayashi, M., Kaida, M. K., Hikawa, H., 2012, Real Time Gesture Recognition System Using Posture Classifier And Jordan Recurrent Neural Network, The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, 10-15 Juni 2012.
Cracknell, J., Cairns, A. Y., Gregor, P., C., Ramsay, Ricketts, I. W., 1994, Gesture Recognition: An Assessment of the Performance of Recurrent Neural Networks Versus Competing Techniques, IEE Colloquium on Applications of Neural Networks to Signal Processing, London, 15 Desemer 1994.
Ghosh, D. K., Ari, S., 2011, A Static Hand Gesture Recognition Algorithm Using K-Mean Based Radial Basis Function Neural Network, 8th International Conference on Information, Communications and Signal Processing (ICICS), Singapura, 13-16 Desember 2011.
Hagg, J., Curuklu, B., Akan, B., Asplund, L., 2008, Gesture Recognition Using Evolution Strategy Neural Network, IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2008), Hamburg, 15-18 September 2008.
King, L. M., Nguyen, H. T., Taylor, P. B., 2005, Hands-free Head-movement Gesture Recognition using Artificial Neural Networks and the Magnified Gradient Function, 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, 17-18 Januari 2006.
Lin, D. T., 1998, Spatio-Temporal Hand Gesture Recognition Using Neural Networks, The 1998 IEEE International Joint Conference on Neural Networks Proceedings, IEEE World Congress on Computational Intelligence, Vol 3, Anchorage, 4-9 Mei 1998.
Maraqa, M., Zaiter, R. A., 2008, Recognition of Arabic Sign Language (ArSL) Using Recurrent Neural Networks, First International Conference on the Applications of Digital Information and Web Technologies, Ostrava, 4-6 Agustus 2008.
Murakami, K., Taguchi, H., 1991, Gesture Recognition Using Recurrent Neural Networks, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 27 April 1991.
Murthy, G. R. S., Jadon, R. S., 2010, Hand Gesture Recognition Using Neural Networks, 2nd International Advance Computing Conference (IACC 2010), Patiala, 19-20 Februari 2010.
Paulraj, M. P., Yaacob, S., Desa, H., Majid, W. M. R. W. A., 2009, Gesture Recognition System for Kod Tangan Bahasa Melayu (KTBM) Using Neural Network, 5th International Colloquium on Signal Processing Its Applications (CSPA 2009), Kuala Lumpur, 6-8 Maret 2009.
Setiawan, H., Setyawan, I., Nugroho, S., 2013, Hand Gesture Recognition Using Optimized Neural Network Shape Fitting on Arm11, International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, 7-8 Oktober 2013.
Su, M. C., Jean, W. F., Chang, H. T., 1996, A Static Hand Gesture Recognition System Using A Composite Neural Network, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, New Orleans, 8-11 September 1996.
Tusor, B., Varkonyi-Koczy, A. R., 2010, Circular Fuzzy Neural Network Based Hand Gesture and Posture Modeling, IEEE Instrumentation and Measurement Technology Conference (I2MTC), Austin, 3-6 Mei 2010.
Weissmann, J., Salomon, R., 1999, Gesture Recognition for Virtual Reality Applications Using Data Gloves and Neural Networks, International Joint Conference on Neural Networks (IJCNN ’99), Washington, 10-16 Juli 1999.
Wysoski, S. G., Lamar, M. V., Kuroyanagi, S., Iwata, A., 2002, A Rotation Invariant Approach on Static-Gesture Recognition Using Boundary Histograms and Neural Networks, Proceedings of the 9th International Conference on Neural Information Processing, Vol 4, Singapura, 18-22 November 2002.
Xu, D., 2006, A Neural Network Approach for Hand Gesture Recognition in Virtual Reality Driving Training System of SPG, 18th International Conference on Pattern Recognition (ICPR 2006), Vol. 3, Hongkong, 20-24 Agustus 2006.
Yewale, S. K., Bharne, P. K., 2011, Hand Gesture Recognition Using Different Algorithms Based On Artificial Neural Network, International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Udaipur, 22-24 April 2011.
Zhu, C., Sheng, W., 2009, Online Hand Gesture Recognition Using Neural Network Based Segmentation, IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2009), St. Louis, 10-15 Oktober 2009.
Hasan, H., Kareem, S. A., 2014, Static Hand Gesture Recognition Using Neural Networks, Artificial Intelligence Review, Vol 41, No 2, hal 147–181.
Maung, T. H. H., 2009, Real-Time Hand Tracking And Gesture Recognition System Using Neural Networks, International Science Indexworld, Vol 3, No 2, hal 393-397.
Nölker, C., Ritter, H., 2002, Visual Recognition of Continuous Hand Postures, IEEE Transactions on Neural Networks, Vol 13, No 4, hal 983-994.
Oz, C., Leu, M. C., 2011, American Sign Language Word Recognition with a Sensory Glove Using Artificial Neural Networks, Engineering Applications of Artificial Intelligence, Vol 24, No 7, hal 1204-1213.
Stergiopoulou, E., Papamarkos, N., 2009, Hand Gesture Recognition Using a Neural Network Shape Fitting Technique, Engineering Applications of Artificial Intelligence, Vol 22, No 8, hal 1141-1158.
Supriyati, E., Iqbal, M., 2013, Recognition System of Indonesia Sign Language based on Sensor and Artificial Neural Network, MAKARA of Technology Series, Vol 17 No 1, hal 25-31.
Symeonidis, K., 1996, Hand Gesture Recognition Using Neural Networks, Neural Network, Vol 13.
Yoshiike, N., Takefuji, Y., 2003, Object Segmentation Using Maximum Neural Networks for the Gesture Recognition System, Neurocomputing, Vol 51, hal 213-224.
Yewale, S. K., Bharne, P. K., 2011, Artificial Neural Network Approach for Hand Gesture Recognition, International Journal of Engineering Science and Technology, Vol 3 No 4.
Bilal, S., Akmeliawati, R., El Salami, M. J., Shafie, A.A.,, 2011, Vision-Based Hand Posture Detection and Recognition for Sign Language - A Study, 4th International Conference On Mechatronics (ICOM), Kuala Lumpur, 17-19 Mei 2011.
Wulandani, S. P., 2007, Jarimatika, Kawan Pustaka, Jakarta Selatan.
Soleh, D. H. P., Abidin, Z., Ariati, J., 2011, Pengaruh Metode Jarimatika Terhadap Prestasi Belajar Matematika Siswa Tunanetra Sekolah Dasar SLB Negri 1 Pemalang, Jurnal Fakultas Psikologi Universitas Diponegoro, Vol 10, No 2, hal 115-125.
Sunyoto, A., Hardjoko, A., 2014, Review Teknik, Teknologi, Metodologi dan Implementasi Pengenalan Gesture Tangan Berbasis Visi, Seminar Nasional Aplikasi Teknologi Informasi 2014 (SNATi 2014), Yogyakarta, 21 Juni 2014.
Antara, I. P. R., Sumarminingsih, E., Handoyo, S., 2013, Model Jaringan Syaraf Tiruan Backpropagation dengan Input Berdasarkan Model Regresi Terbaik, Jurnal Mahasiswa Statistik, Vol 1, No 1, hal 9-12.
Nayakwadi, V., Pokale, N. B., 2014, Natural Hand Gestures Recognition System for Intelligent HCI: A Survey, International Journal of Computer Applications Technology and Research (IJCATR), Vol 3, No 1, hal 10-19.
Wu, Y., Huang, T. S., 1999, Vision-Based Gesture Recognition: A Review, Urbana, Vol 51, hal 103-115.
Wachs, J. P., Kölsch, M., Stern, M., Edan, M., 2011, Vision-Based Hand-Gesture Applications, Communications of the ACM, Vol 54, No 2, hal 60-71.
Samantaray, A., Nayak, S. K., Mishra, A. K., 2013, Hand Gesture Recognition using Computer Vision, Technomanthan 2013, Vol 4, No 6,
Lippmann, R. P., 1987, An Introduction to Computing with Neural Nets, ASSP Magazine, Vol 4, No 2, hal 4-22.
Kusumadewi, S., 2002, Buku Ajar Kecerdasan Buatan, Teknik Informatika Universitas Islam Indonesia, Yogyakarta.
DOI: https://doi.org/10.24076/citec.2014v1i4.32
Refbacks
- There are currently no refbacks.
Indexed by:
Dedicated to: