Peningkatan Performa Pendeteksian Anomali Menggunakan Ensemble Learning dan Feature Selection
Abstract
Intrusion detection systems (IDS) atau Sistem pendeteksian intrusi dikenal sebagai teknik yang sangat menonjol dan terkemuka untuk menemukan malicious activities pada jaringan komputer, tidak seperti firewall konvensional, IDS berbeda dalam hal pengidentifikasian serangan secara cerdas dengan pendekatan analitik seperti data mining dan teknik machine learning. Dalam beberapa dekade terakhir, ensemble learning sangat memajukan penelitian pada machine learning dan klasifikasi pola, serta menunjukan peningkatan hasil kinerja dibandingkan single classifier. Pada Penelitian ini dilakukan percobaan peningkatan nilai akurasi terhadap sistem pendeteksian anomali, pertama dilakukan klasifikasi menggunakan single classifier untuk didapati hasil nilai akurasi yang nantinya dibandingkan dengan hasil dari ensemble learning dan feature selection. Penggunaan ensemble learning bertujuan untuk mendapatkan nilai akurasi yang terbaik dari single classifier. Hasil didapatkan dari nilai confusion matrix dan akan dilakukan pengujian dengan cara membandingkan nilai kedua metode diatas. Penelitian berhasil mendapatkan nilai akurasi single classifier (naïve bayes) yaitu 77,4% dan nilai ensemble learning 96,8%. Kata Kunci— ensemble learning, nsl-kdd, naïve bayes, anomali, feature selection
Intrusion detection systems (IDS) are known as very prominent and leading techniques for finding malicious activities on computer networks, unlike conventional firewalls, IDS differs in terms of identifying attacks intelligently with analytic approaches such as machine learning techniques. In the last few decades, ensemble learning has greatly advanced research in machine learning and pattern classification it has shown an improve in performance results compared to a single classifier. In this study an attempt was made to increase the accuracy of anomalous detection systems, first by classification using a single classifier to find the results of accuracy which will be compared with the results of ensemble learning and feature selection. The use of ensemble learning aims to get the best accuracy value from a single classifier. The results are obtained from the value of the confusion matrix and will be tested by comparing the values of the two methods above. The research succeeded in getting a single classifier accuracy value of 77,4% and ensemble learning 96,8%. Keywords— ensemble learning, nsl-kdd, naïve bayes, anomali, feature selection
Full Text:
PDFReferences
B. A. Tama and K.-H. Rhee, 2017, An extensive empirical evaluation of classifier ensembles for intrusion detection task, Comput. Syst. Sci. Eng., Vol. 32, No. 2, Hal. 149–158.
Hansen, L. K., Salamon, P., 1990, Neural network ensembles, IEEE transactions on pattern analysis and machine intelligence 12, Vol. 10, Hal. 993–1001.
Schapire, R. E., 1990, The strength of weak learnability Machine learning, Vol. 5, No. 2, Hal. 197–227.
Dietterich, T. G., 2000, Ensemble Methods in Machine Learning - In: Multiple Classifier Systems MCS 2000, Lecture Notes in Computer Science, vol 1857, Springer, Berlin, Heidelberg
Ho, T. K., 2002, Multiple classifier combination: Lessons and next steps. In Hybrid methods in pattern recognition, World Scientific, Hal. 171–198.
Woźniak, M., Graña, M., Corchado, E., 2014, A survey of multiple classifier systems as hybrid systems, Information Fusion, vol. 16, pp. 3–17, Mar. 2014.
Kuncheva, L. I., 2014, Combining pattern classifiers: methods and algorithms 2nd Ed, Wiley, New Jersey
Shrivas, A. K., Dewangan, A. K., 2014, An Ensemble Model for Classification of Attacks with Feature Selection based on KDD99 and NSL- KDD Data Set, International Journal of Computer Applications, No. 15, Vol. 99, Hal. 0975-8887
Tama, B. A., Comuzzi, M., Rhee, K. H., 2019, TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-Based Intrusion Detection System, IEEE Access, Vol. 7, Hal. 94497–94507.
Ahmad, I., Basheri, M., Iqbal, M., Rahim, A., 2018, Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection, IEEE Access, Vol. 6, Hal. 33789–33795.
Nkiama, H., Said, S. Z. M., Saidu, M., 2016, A Subset Feature Elimination Mechanism for Intrusion Detection System, International Journal of Advanced Computer Science and Applications, No. 4, Vol. 7, Hal. 148–157
M. A. Ambusaidi, X. He, S. Member, P. Nanda, S. Member, and Z. Tan, 2016, Building an intrusion detection system using a filter-based feature selection algorithm, Vol. 9340, Hal. 1–13
Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A., 2009, Building an intrusion detection system using a filter-based feature selection algorithm, IEEE Symposium on Computational Intelligence for Security and Defense Applications - CISDA 2009, Hal. 1–6
Vembandasamy, K., Sasipriya, R., Deepa, E., 2015, Heart Diseases Detection Using Naive Bayes Algorithm, International Journal of Innovative Science Engineering and Technology (IJISET), No. 9, Vol. 2, Hal. 441–444
Liu, Y., Wang, Y., Zhang, J., 2012, New machine learning algorithm: Random forest, International Conference on Information Computing and Applications in Information Computing and Applications, Hal. 246–252.
Gomes, H. M., Barddal, J. P., Enembreck, A. F., Bifet, A., 2017, A survey on ensemble learning for data stream classification, ACM Computing Surveys, No. 2, Vol. 50
DOI: https://doi.org/10.24076/citec.2020v7i1.238
Refbacks
- There are currently no refbacks.
Indexed by:
Dedicated to: