Implementasi Principal Component Analysis Untuk Sistem Temu Balik Citra Digital

Okfan Rizal Ferdiansyah, Ema Utami, Armadyah Amborowati

Abstract


Tingginya kebutuhan citra digital dalam berbagai bidang, menuntut suatu mekanisme untuk memanajemen data citra tersebut. Pada saat ini, teknik penotasian banyak digunakan untuk memanajemen data citra digital. Namun, teknik ini menimbulkan perbedaan persepsi antara pengguna dengan penotasinya. Untuk itu perlu dikembangkan sebuah sistem temu balik citra digital yang mampu mengatasi permasalahan tersebut. Besarnya dimensi citra menjadi sebuah masalah tersendiri bagi bidang komputasi. Principal Component Analysis (PCA) mampu menjawab tantangan tersebut dengan melakukan proyeksi dari dimensi tinggi ke dimensi yang rendah. Pada penelitian sebelumnya, PCA sudah sering digunakan untuk sistem temu balik citra digital tetapi selalu memakai 100% komponen PCA. Tulisan ini memaparkan hasil analisa performa PCA untuk mengetahui pengaruh jumlah pemakaian komponen PCA terhadap akurasi sistem dengan dataset University Washington, Visual Geometri Group dan dataset wajah. Dari berbagai ujicoba, diperoleh hasil bahwa 10% s.d 30% komponen PCA yang dipakai menghasilkan akurasi sistem yang paling tinggi untuk masing-masing dataset, yaitu 91,4% untuk dataset University Washington, 92,0% untuk dataset Visual Geometri Group, dan 75,3% untuk dataset wajah.

 

Increasing needs of digital image in many fields, requires a mechanism for managing the image data. At this time, notation techniques widely used to managing of digital image data. However these techniques cause differences of perception between the users and programmer. So it is necessary to develop a digital image retrieval system which is able to overcome these problems. Image dimension becomes a problem for the field of computing. Principal Component Analysis (PCA) answer the challenge by doing a high-dimensional projection to the lower dimension. In previous studies the PCA has been frequently used for digital image retrieval system but always use 100% PCA components. This article presents the results of the analysis of the PCA performance to know the influence usage amount PCA components against the accuracy of the system with dataset of University Washington (UW), Visual Geometri Group (VGG) and face. Of the various tests carried out showed that 10% to 30% of components used PCA system produces the highest accuracy for each dataset, 91.4% to 92.0% UW dataset to VGG dataset and 75.3 % for face dataset.


Full Text:

PDF

References


Shortliffe, E. H., Cimino, J. J., 2006, Biomedical Informatics: Computer Applications in Health Care and Biomedicine, Springer-Verlag London, United States of America.

Kulkarni, R. K., Amoda, N., 2013, Efficient Image Retrieval using Region Based Image Retrieval, IJAIS Proceedings on International Conference and workshop on Advanced Computing 2013, No. 2, New York, Juni 2013.

Vimina E. R., Jacop K. P., 2013, A Sub-bloc Based Image Retrieval Using Modified Integrated Region Matching, International Journal of Computer Science Issue, Vol 10, No 2, Hal 686-692.

Yasmin, M., Mohsin, S., Irum, I., Sharif, M., 2013, Content Based Image Retrieval by Shape Color and Relevance Feedback, Life Science Journal, Vol 10, No 4s, Hal 593 - 598.

Singh, A., Shinde, A. G., Gulhane, S., M., 2013, Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patters, Journal of Engineering, computer & Applied Sciencec(JEC&AS), Vol 2, No 3, Hal 50-54.

Johnson, R. A., Wichern, D. W., 2007, Applied Multivariate Statistical Analysis, 6thed, Prentice Hall, New Jersey.

Pratiwi, D. E., Harjoko, A. 2013, Implementasi Pengenalan Wajah Menggunakan PCA (Principal Component Analysis), Indonesian Journal of Electronics and Instrumentation Systems (IJEIS), Vol. 3, No. 2, Hal 175-184.

Kaur, P., Jyoti, K., 2013, Implementation of CBIR System for CAD Jewellery Images Using PCA, International Journal of Scientific & Engineering Research, Vol 4, No 2.

Kekre, H. B., Thepade S. D., Maloo, A., 2010, CBIR Feature Vector Dimension Reduction with Eigenvector of Covariance Matrix using Row, Column and Diagonal Mean Sequences, International Jurnal of Computer Applications, Vol 3, No 12, Hal 39-46.

Cahyadi, D., 2007. Ektraksi dan Kemiripan Mata pada Sistem Identifikasi Buron. http://lontar.ui.ac.id/file?file=digital/123280-SK-691, diakses tanggal 10 Mei 2014.

Smith, L. I., 2002, A Tutorial on Principal Component Analysis, http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_component.pdf, diakses tanggal 17 Mei 2014.

Weisstein, E. W., 2007, Distance, http://mathwordl.wolfram.com/distance.html, diakses tanggal 17 Mei 2004

Manning, C. D., Raghavan, P., Schütze, H., 2009, Introduction to Information Retrieval, Cambridge, Cambridge University Press.




DOI: https://doi.org/10.24076/citec.2015v2i3.50

Refbacks

  • There are currently no refbacks.


Indexed by:

 

Dedicated to:

 

Creative Information Technology Journal (CITEC Journal) is licensed under a Creative Commons Attribution 4.0 International License