Tinjauan Literatur Sistematik tentang Deteksi Covid-19 menggunakan Convolutional Neural Networks
Abstract
Covid-19 menyerang sel-sel epitel yang melapisi saluran pernapasan sehingga dalam kasus ini dapat memanfaatkan gambar x-ray dada untuk menganalisis kesehatan paru-paru pada pasien. Menggunakan x-ray dalam bidang medis merupakan metode yang lebih cepat, lebih mudah dan tidak berbahaya yang dapat dimanfaatkan pada banyak hal. Salah satu metode yang paling sering digunakan dalam klasifikasi gambar adalah convolutional neural networks (CNN). CNN merupahan jenis neural network yang sering digunakan dalam data gambar dan sering digunakan dalam mendeteksi dan mengenali object pada sebuah gambar. Model arsitektur pada metode CNN juga dapat dikembangkan dengan transfer learning yang merupakan proses menggunakan kembali model pre-trained yang dilatih pada dataset besar, biasanya pada tugas klasifikasi gambar berskala besar. Tinjauan literature review ini digunakan untuk menganalisis penggunaan transfer learning pada CNN sebagai metode yang dapat digunakan untuk mendeteksi covid-19 pada gambar x-ray dada. Hasil sistematis review menunjukkan bahwa algoritma CNN dapat digunakan dengan akruasi yang baik dalam mendeteksi covid-19 pada gambar x-ray dada dan dengan pengembangan model transfer learning mampu mendapatkan performa yang maksimal dengan dataset yang besar maupun kecil.
Kata Kunci—CNN, transfer learning, deteksi, covid-19
Covid-19 attacks the epithelial cells lining the respiratory tract so that in this case it can utilize chest x-ray images to analyze the health of the lungs in patients. Using x-rays in the medical field is a faster, easier and harmless method that can be utilized in many ways. One of the most frequently used methods in image classification is convolutional neural networks (CNN). CNN is a type of neural network that is often used in image data and is often used in detecting and recognizing objects in an image. The architectural model in the CNN method can also be developed with transfer learning which is the process of reusing pre-trained models that are trained on large datasets, usually on the task of classifying large-scale images. This literature review review is used to analyze the use of transfer learning on CNN as a method that can be used to detect covid-19 on chest x-ray images. The systematic review results show that the CNN algorithm can be used with good accuracy in detecting covid-19 on chest x-ray images and by developing transfer learning models able to get maximum performance with large and small datasets.
Keywords—CNN, transfer learning, detection, covid-19
Full Text:
PDFReferences
Rawat, W., Wang, Z., 2017, Deep convolutional neural networks for image classification: A comprehensive review, Neural computation, No. 9, Vol. 29, Hal. 2352-2449.
Siddiqi, R., 2019, Effectiveness of Transfer Learning and Fine Tuning in Automated Fruit Image Classification, In Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, Xiamen China, 5 – 9 Juli
Fei-Fei, L., Deng, J. and Li, K., 2009, ImageNet: Constructing a large-scale image database, Journal of vision, No. 8, Vol. 9, Hal. 1037-1037.
Bougias, H., VELIOU, K., Ghiatas, A., Chaidou, A. and Christou, A., 2019, Identifying pneumonia in chest X-rays: Comparison between different transfer learning methods, European Congress of Radiology 2020, Wina, 15 - 19 Juli.
Labhane, G., Pansare, R., Maheshwari, S., Tiwari, R., Shukla, A., 2020, Detection of Pediatric Pneumonia from Chest X-Ray Images using CNN and Transfer Learning, In 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), Jaipur - India, 7 - 8 Februari
Sharma, H., Jain, J.S., Bansal, P., Gupta, S., 2020, Feature Extraction and Classification of Chest X-Ray Images Using CNN to Detect Pneumonia, In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida - India, 29 - 31 Januari
Saraiva, A. A., Ferreira, N.M.F., de Sousa, L. L., Costa, N. J. C., Sousa, J. V. M., Santos, D.B.S., Valente, A., Soares, S., 2019, 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), Prague, 22 - 24 Februari
Narin, A., Kaya, C. and Pamuk, Z., 2020, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks, arXiv preprint, arXiv:2003.10849.
Sethy, P. K. and Behera, S. K., 2020, Detection of coronavirus disease (Covid-19) based on deep features, Preprints, 2020030300, doi: 10.20944/preprints202003.0300.v1
Horry, M.J., Chakraborty, S., Paul, M., Ulhaq, A., Pradhan, B., Saha, M., Shukla, N., 2020, X-Ray Image based COVID-19 Detection using Pre-trained Deep Learning Models, doi: 10.31224/osf.io/wx89s.
Apostolopoulos, I. D., Mpesiana, T. A., 2020, Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks, Physical and Engineering Sciences in Medicine 43, Hl. 635 - 640
Abbas, A., Abdelsamea, M. M., Gaber, M. M., 2020, Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network, The International Journal of Research on Intelligent Systems for Real Life Complex Problems, Vol. 51, Hal. 584 - 864
Zhang, J., Xie, Y., Li, Y., Shen, C., Xia, Y., 2020, Covid-19 screening on chest x-ray images using deep learning-based anomaly detection, arXiv preprint, arXiv:2003.12338v1
Hemdan, E. E. D., Shouman, M. A., Karar, M. E., 2020, Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images, arXiv preprint, arXiv:2003.11055.
Hariyani, Y. S., Hadiyoso, S., Siadari, T. S., 2020, Deteksi Penyakit Covid-19 Berdasarkan Citra X-Ray Menggunakan Deep Residual Network, ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, No. 2, Vol. 8, Hal. 443.
Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., Xu, B., 2020, A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19), MedRxiv.
Maghdid, H. S., Asaad, A. T., Ghafoor, K. Z., Sadiq, A. S., Khan, M. K., 2020, Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms, arXiv preprint, arXiv:2004.00038.
Salehi, A. W., Baglat, P., Gupta, G., 2020, Review on Machine and Deep Learning Models for the Detection and Prediction of Coronavirus, Materials Today: Proceedings.
Bernal, J., Kushibar, K., Asfaw, D.S., Valverde, S., Oliver, A., Martí, R. and Lladó, X., 2019, Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review, Artificial intelligence in medicine, Vol. 95, Hal. 64-81.
Kermany, D., Zhang, K., Goldbaum, M., 2018, Labeled optical coherence tomography (OCT) and Chest X-Ray images for classification, Mendeley data.
Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T.Q.., Ghassemi, M., 2020, COVID-19 Image Data Collection: Prospective Predictions Are the Future, arXiv preprint, arXiv:2006.11988.
Tompson, J., Goroshin, R., Jain, A., LeCun, Y. and Bregler, C., 2015, Efficient object localization using convolutional networks, In Proceedings of the IEEE conference on computer vision and pattern recognition.
Yu, D., Wang, H., Chen, P. and Wei, Z., 2014, Mixed pooling for convolutional neural networks, In International conference on rough sets and knowledge technology
Gao, Y., Mosalam, K.M., 2018, Deep transfer learning for image‐based structural damage recognition, Computer‐Aided Civil and Infrastructure Engineering, No. 9, Vol. 33, Hal. 748-768.
DOI: https://doi.org/10.24076/citec.2021v8i1.261
Refbacks
- There are currently no refbacks.
Indexed by:
Dedicated to: