Sistem Prediksi Penyakit Kanker Serviks Menggunakan CART, Naive Bayes, dan k-NN
Abstract
Tersedianya data histori rekam medis pasien kanker serviks pada institusi pelayanan kesehatan, tidak disertai dengan proses ekstraksi menjadi sebuah pengetahuan atau informasi. Penggunaan teknik data mining sangat berpotensi untuk diimplementasikan kedalam sistem yang dapat melakukan prediksi penyakit kanker serviks. Pada penelitian ini berfokus pada dataset diagnosa medis pasien yang akan melakukan tes Pap Smear. Algoritma yang digunakan untuk melakukan klasifikasi penyakit kanker serviks adalah Classification And Regression Trees (CART), Naive Bayes, dan k-Nearest Neighbor (k-NN). Pengujian yang dilakukan terhadap algoritma CART Decision Tree, Naive Bayes, dan k-NN, menggunakan formula Confusion Matrix, dengan menggunakan teknik pemecahan dataset Holdout. Hasil pengujian terhadap algoritma yang digunakan, menunjukkan algoritma Naive Bayes memiliki akurasi terbaik sebesar 94,44%, sedangkan tingkat akurasi yang dihasilkan algoritma CART dan k-NN adalah 88,89%, 85,04%. Performa yang didapatkan oleh masing-masing algoritma yang digunakan, memungkinkan penggunaan sistem prediksi penyakit kanker serviks untuk mendukung keputusan klinis pada pasien baru.
Full Text:
PDFReferences
Primadi, O., 2015, Situasi Penyakit Kanker – Kementrian Kesehatan, http://www.depke.go.id/ download.php?file=download/pusdatin/buletin/buletin-kanker.pdf, diakses pada tanggal 31 Oktober 2016.
American Cancer Society, 2014, Cervical Cancer Prevention and Early Detection, http://www.cancer.org/acs/groups/cid/documents/webcontent/003167-pdf.pdf, diakses pada tanggal 4 November 2016.
Ramachandran, P., Girija, N., Bhuvaneswari, T., 2014, Early Detection and Prevention of Cancer using Data Mining Techniques, International Jurnal of Computer Applications, No. 13, Vol. 97.
Han, J., Kamber, M., Pei, J., 2012, Data Mining Concepts and Techniques, Ed. 3, Morgan Kaufmann, USA.
Kumar, D. S., Sathyadevi, G., Sivanesh, S., 2011, Decision Support System for Medical Diagnosis Using Data Mining, International Jurnal of Computer Science Issue, No. 3, Vol. 8
Venkatesan, E., Velmurugan, T., 2015, Performance Analysis of Decision Tree Algorithms for Breast Cancer Classification, Indian Journal of Science and Technology, No. 29, Vol. 8
Jabbar, M. A., Deekshatulu, B. L., Chandra, P., 2013, Classification of Heart Disease Using K-Nearest Neighbor and Genetic Algorithm, International Conference on Computational Intelligence: Modeling Techniques and Applications. Hal 85-94
Shouman, M., Turner, T., Stocker, R., 2012, Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients, International Journal of Information and Education Technology, No, 3, Vol 2.
Ratnam, D., Bindu, P. H., Sai, V. M., Devi, S. P. R., Rao, P. R., 2014, Computer-Based Clinical Decision Support System for Prediction of Heart Diseases Using Naive Bayes Algorithm, International Jurnal of Computer Science and Information Technologies, No.2, Vol. 5.
Medhekar, D. S., Bote, M. P., Deshmukh, S. D., 2013, Heart Disease Prediction System using Naive Bayes, International Jurnal of Enhanced Research in Science Technology and Engineering, No. 3 , Vol. 2.
Swati, S,, Priyadarshi, A,, 2015, Decision Support System on Prediction of Heart Disease Using Data Mining Techniques, International Journal of Engineering Research and General Science, No. 3, Vol. 3.
Xindong, W., Kumar, V., 2009, The Top Ten Algorithms in Data Mining, Taylor & Francis Group, New York.
Lei, Y. C., Huan, L., 2003, Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution, Proceedings of the Twentieth International Conference on Machine Learning.
Timofeev, R., 2004, Classification and Regression Trees (CART) Theory and Applications, Thesis, Center of Applied Statistics and Economics, Univ. Humboldt, Berlin.
Prasetyo, E., 2012, Data Mining Konsep dan Aplikasi Menggunakan Matlab, Andi Offset, Yogyakarta.
Nugroho, A., Kusrini, Arief, M., R., 2014, Sistem Pendukung Keputusan Kredit Usaha Rakyat PT. Bank Rakyat Indonesia Unit Kaliangkrik Magelang, Creative Information Technology Journal (CITEC), No.1, Vol. 2. http://citec.amikom.ac.id/main/index.php/citec/ article/viewFile/33/33.pdf.
The Seventh Report of The Join National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, https://www.nhlbi.nih.gov/files/docs/guidelines/ jnc7full.pdf, diakses tgl 8 Desember 2016.
Meiyar, V. K. The Comparative Study for Diagnosing Heart Disease using KNN and Naive Bayes, International Jurnal of Advance Research in Computer Science and Management Studies, No. 8, Vol. 3.
Ani, R., Sasi, G., Sankar, U. R., Deepa, O. S., 2016, Decision Support System for Diagnosis and Prediction of Chronic Renal Failure using Random Subspace Classification, Advances in Computing, Communications and Informatics, 2016 International Conference on, Jaipur, 21-24 September 2016.
DOI: https://doi.org/10.24076/citec.2017v4i2.100
Refbacks
- There are currently no refbacks.
Indexed by:
Dedicated to: